A Sustainable Remedy for the Lower Passaic River

Cooperating Parties Group

Sustainable Remedy is Protective

- Consistent with EPA Guidance
 - Sediment Management Principles
 - Uses Adaptive Management to assure success
- Addresses entire river
- Is protective
 - Will Meet Risk Reduction Goals
 - Removes high concentration areas
 - Minimizes re-suspension of COCs
 - Manages interim risks
- NCP Process Lowest Cost Alternative that is Protective
- Reduces duration/disturbance of River
- Enhances the natural recovery rates of the River

Presentation Elements

- Overview of Sustainable Remedy
- Questions Raised at Last Presentation
 - Mass Removal
 - Engineering Alternatives
 - Modeling Results
 - Risk Reduction
 - Out-of-River Projects
- Addressing Uncertainty

SUSTAINABLE REMEDY OVERVIEW

Goals for the River

- Improve the quality of the River as quickly as possible
- Use techniques that have the best chance for success and have been proven effective
- Use adaptive techniques to address uncertainty
- Minimize impacts and provide value to neighboring communities and watershed

A Sustainable Remedy

- Needs to address the entire 17-mile ecosystem
- Consists of:
 - Targeted remediation of highest surface sediment contamination followed by review of actual, measured results against performance metrics
 - Projects such as wetlands restoration, storm water reduction initiatives and efforts to improve access and usability
- Provides interim and long-term risk reduction

A Sustainable Remedy

- Supported by updated Conceptual Site Model
 - Utilizes all available data from ongoing RI/FS
 - Multiple Lines of Evidence
- Provides an integrated package of risk mitigation technologies
- Specifically addresses uncertainty associated with complex river/estuarine systems

Sustainable Remedy Based on "Adaptive Management"

Design

How do you best address uncertainty?

DEVELOPMENT OF TARGET AREAS

RM 10.9 Data Clearly Illustrates Ability to Reduce Potential Risk with Targeted Removal

- 2,3,7,8 TCDD Removal Area is well defined by 1000 ppt contour:
 - In fine sediment near shore in central to upriver portion of inside river bend
 - Rapid decline of concentrations outside of silt deposit
- Deeper sediment is stable as documented by radiodating
- TCDD co-located with other COCs (especially those with the highest concentrations such as PCBs and mercury)
- Targeted remediation of high concentration area provides significant overall risk reduction

Bounded by river channel and adjacent samples

Developing
Target Areas:
Example at RM
7-7.8

1

Use of Multiple Lines of Evidence

- Locations selected based on surficial 2,3,7,8 TCDD concentration > 500 ppt
- Delineation of Target Areas based on:
 - Silt deposits (Side-scan survey)
 - Bathymetry
 - Navigation channel
 - Observed erosion (post-Irene)
 - Extrapolation between data points

Proposed Target Areas

- Elevated TCDD and other COCs are generally co-located
- As per Adaptive Management, ongoing delineation and monitoring will be used to refine areas
- Will reduce surface concentrations of TCDDs by 80% and bring PCBs to background levels

MASS REMOVAL

Mass Removal - Issues

- Human Health and Ecological Risks Driven by Surface (0-6") Concentrations, not by Mass
- In R2's FFS Analysis, Cap & Dredge is more Protective than Complete Removal
 - Duration
 - Resuspension
 - Increased Human Health Risk
- Observed Consolidation of Sediments at TSI Phase
 1 May Further Hinder Removal and Exacerbate
 Resuspension in Lower Reach of River

Mass Removal - Issues

- It is not axiomatic that mass removal will achieve desired endpoints:
 - New Bedford Harbor
 - 45 % PCB mass removal in 1994-95
 - Caged mussels showed no reduction
 - Grasse River
 - 27% PCB mass removal in 1995
 - Resident fish showed no response

Distribution of TCDD Mass vs. River Mile

ENGINEERING ALTERNATIVES

Engineering Alternatives

- Sustainable Remedy
 - Utilizes EPA FFS Cap configuration as default
 - Additional analysis will select area-specific configurations
- Alternatives available:
 - Cap placement configurations
 - Bank softening/habitat improvement
 - Cap thickness/armoring
 - Active layers
 - Composite materials

Site Specific Implementation (RM10.9)

- Cap configuration
- Methodology:
 - Dredging
 - Resuspension Control
- Duration
- State and Local Permitting
- Utility Clearances

MODELING RESULTS

CFT Model Projections

- Plot #1 EPA Region 2 FFS Presentation
- Plot #2 Region 2 Alternatives in CPG's model
- Plot #3 Plot #2 Adjusted for Realistic
 Duration
- Plot #4 Comparison with Targeted Remediation

EPA Model Predictions (Digitized from 2012 EPA CAG slides)

Recontamination of Caps

 Contamination Remains Upstream and Downstream of the Remediated Area for Region 2's Alternatives

Realistic Project Durations

- Dredging projects in less urbanized river systems have rarely achieved assumed rates:
 - Hudson River: 363,000 cy in 2011 and about 650,000 cy in 2012
 - Fox River: about 500,000 cy/yr
 - Tierra Phase 1 project equates to about 120,000 cy/yr
 - RM 10.9 Removal will equate to about 120,000 cy/yr
- Engineers estimate FFS alternatives to take 17 to 40+ years to complete

RISK REDUCTION HUMAN HEALTH & ECOLOGICAL

Human Health Direct Exposure Risk Reduction

- By focusing on mudflats and nearshore areas with elevated levels of COPCs, targeted remedy rapidly reduces the potential for human exposure
- By removal of target areas, site-wide direct contact risks to waders, swimmers, recreational users, etc. are eliminated
- Sediment remedy does not address risks posed by pathogens
 - Other major source of human health risk in river system

Human Health Exposure Scenarios

Wader

Swimmer

Boater

Worker

Angler/ Fish Consumer

Site-wide Risk After Remediation (Target Risk Range)

Reduced – Approaches Target Risk Range

Risks to Angler/Fish Consumer (Informed by CAS)

- Most of risk above target risk range attributed to Carp Ingestion
 - Risk Assessment Assumptions
 - Diet Modifications
- Programs under Consideration to
 - Fish Exchange
 - Carp Eradication/Reduction
 - Local Aquaculture
- Community Education

Observed Fishing Locations

Catch Preferences: Current Consumption (Consuming Anglers)

Catch Preferences:
But-for-Advisory
Consumption
(Consuming and Non-Consuming Anglers)

Impact on Risk

Diet and Exposure Assumption Modifications

- Mixed fish diet with 20% each perch, catfish, bass, eel, and carp
- All others mixed fish diet with 24.5% each perch, catfish, bass, eel, and 2% carp

- EPA's RME assumptions:
 58 LPRSA fish meals/year for 24 years, and no loss due to cooking
- More realistic
 assumptions: 28 LPRSA fish meals/year for 9 years, and cooking loss
- EPA's CTE assumptions:
 6 LPRSA fish meals/year
 for 9 years, and cooking
 loss

Ecological Risk: Shoal Habitat

- Typically more productive and ecologically important than deeper river channels
- Represents essential habitat for species such as wading birds
- Represents important habitat for species such as small forage fish

Ecological Exposure Scenarios

Risk After Remediation (HQ<1, HQ<<1)

Wading Shorebirds

 Piscivore Wading Shorebirds

Other Piscivore
 Shorebirds

Forage Fish

Reduced

Anticipated Ecological Risk Reductions

- Risks to wading shorebirds that prey on invertebrates (spotted sandpiper) eliminated (HQs << 1)
- Risks to piscivore wading birds that prey on small fish (great blue heron) greatly reduced (HQs < 1)
- Risks to other piscivore birds (belted kingfisher) eliminated(HQs << 1)
- Risks to small forage fish (mummichog and juvenile fish) greatly reduced (HQs < 1)
- Concentrations of chemicals in prey items (invertebrates and forage fish) living in shallow waters reduced

Following Restoration

Because of its significant ecological relevance to the ecology of the lower Passaic River, removal of targeted areas rapidly reduces exposure for many aquatic and aquatic-dependant species, and allows for NRD restoration projects to be implemented quicker.

Ecological Impacts of Carp Population

- Degrade aquatic systems by reducing water quality, vegetated habitat area, and the prey populations of valued fish and wildlife
- Disturb sediment, and increase turbidity
- Destroy vital habitat
- Feed on native fish eggs
- Cause shift to less diverse benthic community

OUT-OF-RIVER COMPONENT

Out-of-River Component

- Focuses on RM 0-17
- Addresses ongoing contamination and "urban river" water quality issues
- Includes projects, such as wetlands restoration, steps to reduce urban runoff, new parks, and improved access points
- Incorporates input from River communities
- Community Education Programs

Example

LYNDHURST PARK CONCEPTUAL DESIGN

Source: Google Maps

Site Analysis Plan

- AMPHITHEATER SEATING STEPS NORTHERN RIVERWALK TERMINUS
- PUBLIC BOAT LAUNCH RAMP AND FLOATING DOCK (CURRENTLY EMERGENCY OFFICIAL USE ONLY)
- 3. RIVERWALK (PRIMARY PATHWAY)
- 4. RIVERWALK (SECONDARY PATHWAY, PEDESTRIAN USE) WITH LEARNING NODES PERMEABLE PAVEMENT.
- 5. REGENERATED RIPARIAN FOREST HABITAT
- 6. (REGENERATED RIVER BRIDGE) TIDAL MARSH HABITAT (LOW + HIGH)

- 7. SMALL WATERCRAFT BOAT LAUNCH AND FLOATING DOCKS
- RECONFIGURED PARKING LOT
 (EXTENDED AREA AND PERMEABLE PAVEMENT)
- EVERGREEN BUFFER SCREENING EXISTING UTILITIES AND STORAGE BUILDING
- 10. ENVIRONMENTAL EDUCATION CENTER
- 11. OPEN LAWN / GATHERING SPACE
- 12. EXISTING PICNIC PAVILION WITH TABLES
- 13. BOARDWALK OVERLOOK
- 14. UPLAND MEADOW HABITAT

- 15. EXISTING PARKING LOT
- 16. STORMWATER TREATMENT / WET MEADOW HABITAT
- 17. EXISTING BOCCIE COURTS
- 18. BRIDGE AND BOARDWALK OVERLOOK
- 19. EXISTING BASEBALL FIELD
- 20. OVERLOOK / SOUTHERN RIVERWALK TERMINUS

Sections of Proposed Zone Design

ZONE 1

Boat Launch

ZONE 1

METHODS TO ADDRESS UNCERTAINTY

Elements to Actively Address Uncertainty

- Adaptive Management
- Fish Exchange
- Community Education
- Sustainable Development

Sustainable Remedy Based on "Adaptive Management"

Design

How do you best address uncertainty?

Information to measure success and support future decision-making

- Post-remedy monitoring to measure effectiveness
 - Fish tissue
 - Ecology
 - Bathymetry
- Need to demonstrate success to EPA and stakeholders
- Open dialogue with regulators

Fish Exchange

- "Active" substitution to "passive" fish advisory
 - Source of safe, high-quality protein
 - Eliminate risk pathway
- Economic development
 - Jobs for under-employed, veterans & ex-offenders
 - Rutgers University experts supporting development of programs
- Education
 - Connecting communities with the river
 - Science/technology education

Sustainable Development

- Provides platform for all stakeholders
- Consistent with Urban Waterways Initiative
- Provides ecological, economic and social value

Sustainable Remedy is Protective

- Consistent with EPA Guidance
 - Sediment Management Principles
 - Uses Adaptive Management to assure success
- Addresses entire river
- Is protective
 - Will Meet Risk Reduction Goals
 - Removes high concentration areas
 - Minimizes re-suspension of COCs
 - Manages interim risks
- NCP Process Lowest Cost Alternative that is Protective
- Reduces duration/disturbance of River
- Enhances the natural recovery rates of the River